PowerAndFreqStability.cs 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375
  1. using System;
  2. using System.Collections.Generic;
  3. using System.Linq;
  4. using System.Text;
  5. using System.Threading;
  6. using System.Threading.Tasks;
  7. using Tps_LQ_Transmitter.com;
  8. namespace Tps_LQ_Transmitter.models
  9. {
  10. class PowerAndFreqStability: BaseModel
  11. {
  12. double[,] WTempPowerVal;
  13. double[,] dBTempPowerVal;
  14. string serial = "****";
  15. public PowerAndFreqStability()
  16. {
  17. TemplateName = "功率及频率稳定度测试";
  18. }
  19. /// <summary>
  20. /// 功率及频率稳定度测试
  21. /// </summary>
  22. public override bool Run(TestNode parameters)
  23. {
  24. double y_value, x_value;
  25. Random random = new Random();
  26. //获取仪器
  27. var SA = this.tps.GetDevice("频谱仪");
  28. TransmitterSerialPort SerialClient = new TransmitterSerialPort();
  29. PowerAndFreqStabilityOutData Data = new PowerAndFreqStabilityOutData();
  30. DataType PowerPrint = new DataType();//功率(dBm)
  31. DataType FreqPrint = new DataType();//实测频率
  32. DataType FreqAccuracyPrint = new DataType();//频率稳定度
  33. DataType PowerSumPrint = new DataType();//两路功率总和(w)
  34. DataType PowerFlatnessPrint = new DataType();//两路功率不平度(dB)
  35. //if (SA == null)
  36. //{
  37. // ShowMessage(MsgType.Error, string.Format("仪器不齐全,{0}/{1}无法运行", parameters.Channel, parameters.Name));
  38. // return false;
  39. //}
  40. ConfigParameter PowerPara = new ConfigParameter();
  41. PowerPara.ComPort = parameters.Parameters.GetParameter<string>("串口");
  42. PowerPara.OutLoss = parameters.Parameters.GetParameter<double>("输出损耗");
  43. PowerPara.StartFrequency = parameters.Parameters.GetParameter<double>("起始频率");
  44. PowerPara.StepFrequency = parameters.Parameters.GetParameter<double>("频率步进");
  45. PowerPara.FrequencyNumber = parameters.Parameters.GetParameter<int>("频点数量");
  46. PowerPara.StopFrequency = parameters.Parameters.GetParameter<double>("终止频率");
  47. PowerPara.SPAN = parameters.Parameters.GetParameter<string>("扫描带宽(SPAN)");
  48. PowerPara.REF = parameters.Parameters.GetParameter<string>("参考电平(REF)");
  49. PowerPara.RBW = parameters.Parameters.GetParameter<string>("分辨率带宽(RBW)");
  50. PowerPara.VBW = parameters.Parameters.GetParameter<string>("视频带宽(VBW)");
  51. PowerPara.ControlDelay = parameters.Parameters.GetParameter<int>("控制延时");
  52. PowerPara.PowerLower = parameters.Parameters.GetParameter<double>("功率下限");
  53. PowerPara.PowerUpper = parameters.Parameters.GetParameter<double>("功率上限");
  54. PowerPara.FreqAccuracyUpper = parameters.Parameters.GetParameter<double>("频率稳定度上限");
  55. PowerPara.PowerSumLower = parameters.Parameters.GetParameter<double>("两路功率总和下限");
  56. PowerPara.PowerFlatnessUpper = parameters.Parameters.GetParameter<double>("功率不平度上限");
  57. if ((PowerPara.StartFrequency == 0) || ((PowerPara.StepFrequency == 0) && (PowerPara.FrequencyNumber == 0)) || (PowerPara.StopFrequency == 0)
  58. || (PowerPara.SPAN == null) || (PowerPara.REF == null) || (PowerPara.RBW == null) || (PowerPara.VBW == null) || (PowerPara.PowerLower == 0)
  59. || (PowerPara.PowerUpper == 0) || (PowerPara.FreqAccuracyUpper == 0) ||(PowerPara.PowerSumLower == 0) || (PowerPara.PowerFlatnessUpper == 0))
  60. {
  61. ShowMessage(MsgType.Error, string.Format("配置文件中频率参数为空,{0}/{1}无法运行", parameters.Channel, parameters.Name));
  62. return false;
  63. }
  64. if (PowerPara.ControlDelay == 0)
  65. {
  66. PowerPara.ControlDelay = 10;
  67. }
  68. if(false)//需具备仪器
  69. {
  70. SA.Write("仪器复位"); SA.Query("OPC");
  71. SA.Write("SPAN", PowerPara.SPAN); SA.Query("OPC");
  72. SA.Write("RBW", PowerPara.RBW); SA.Query("OPC");
  73. SA.Write("VBW", PowerPara.VBW); SA.Query("OPC");
  74. SA.Write("REF", PowerPara.REF); SA.Query("OPC");
  75. SA.Write("SingleOrCont", "0"); SA.Query("OPC");
  76. }
  77. if ((PowerPara.FrequencyNumber != 0) && (PowerPara.FrequencyNumber != 1) && (PowerPara.StepFrequency == 0))
  78. {
  79. PowerPara.StepFrequency = ((int)(((PowerPara.StopFrequency - PowerPara.StartFrequency) / (PowerPara.FrequencyNumber - 1)) * 100)) / 100;
  80. }
  81. if (PowerPara.StepFrequency != 0)
  82. {
  83. PowerPara.FrequencyNumber = ((int)((PowerPara.StopFrequency - PowerPara.StartFrequency) / PowerPara.StepFrequency)) + 1;
  84. }
  85. double CenterFreq;
  86. Data.Power = new double[PowerPara.FrequencyNumber];
  87. Data.Freq = new double[PowerPara.FrequencyNumber];
  88. Data.FreqAccuracy = new double[PowerPara.FrequencyNumber];
  89. if (tps.Serial != serial)
  90. {
  91. WTempPowerVal = new double[2, PowerPara.FrequencyNumber] ;
  92. dBTempPowerVal = new double[2, PowerPara.FrequencyNumber];
  93. serial = tps.Serial;
  94. for (int initVal1 = 0; initVal1 < 2; initVal1++)
  95. {
  96. for (int initVal2 = 0; initVal2 < PowerPara.FrequencyNumber; initVal2++)
  97. {
  98. WTempPowerVal[initVal1, initVal2] = -100;
  99. dBTempPowerVal[initVal1, initVal2] = -100;
  100. }
  101. }
  102. }
  103. for (int point = 0; ; point++)
  104. {
  105. CenterFreq = PowerPara.StartFrequency + PowerPara.StepFrequency * point;
  106. if (CenterFreq > PowerPara.StopFrequency || (PowerPara.FrequencyNumber == 1 && point == 1))
  107. {
  108. break;
  109. }
  110. if (false)//需具备仪器
  111. {
  112. //控制
  113. SerialClient.DUT_Transmitter_Ctrol(PowerPara.ComPort, Convert.ToByte(point + 1));
  114. Thread.Sleep(PowerPara.ControlDelay);//单位ms
  115. SA.Write("CENTER", CenterFreq.ToString()); SA.Query("OPC");
  116. PsaPeakValue_Tracedata(SA, out y_value, out x_value, true);
  117. Data.Power[point] = y_value + PowerPara.OutLoss;//功率
  118. }
  119. Data.Power[point] = random.Next(3000, 4000) / 100.0;//随机数
  120. PowerPrint.Lower = PowerPara.PowerLower;
  121. PowerPrint.Upper = PowerPara.PowerUpper;
  122. PowerPrint.TestVal = Math.Round(Math.Pow(10, (Data.Power[point] / 10)) / 1000, 2);//功率W
  123. if ((PowerPrint.TestVal >= PowerPrint.Lower) && (PowerPrint.TestVal <= PowerPrint.Upper))
  124. {
  125. PowerPrint.Result = true;
  126. }
  127. else
  128. {
  129. PowerPrint.Result = false;
  130. }
  131. FreqPrint.Lower =0-((PowerPara.FreqAccuracyUpper * CenterFreq) + CenterFreq);
  132. FreqPrint.Upper = (PowerPara.FreqAccuracyUpper * CenterFreq) + CenterFreq;
  133. // FreqPrint.TestVal = Math.Round(x_value / 1000000, 3);//实测频率
  134. FreqPrint.TestVal = random.Next(-600, 6000) / 100.0 + CenterFreq;//随机数
  135. if ((FreqPrint.TestVal >= FreqPrint.Lower) && (FreqPrint.TestVal <= FreqPrint.Upper))
  136. {
  137. FreqPrint.Result = true;
  138. }
  139. else
  140. {
  141. FreqPrint.Result = false;
  142. }
  143. FreqAccuracyPrint.Upper = PowerPara.FreqAccuracyUpper;
  144. //FreqAccuracyPrint.TestVal = Math.Round(Math.Abs(x_value - CenterFreq * 1000000) / (CenterFreq * 1000000), 6);//频率稳定度
  145. FreqAccuracyPrint.TestVal = Math.Round(Math.Abs((random.Next(-600, 6000) / 100.0 + CenterFreq)*1000000 - CenterFreq * 1000000) / (CenterFreq * 1000000), 6);//随机数
  146. if (FreqAccuracyPrint.TestVal <= FreqAccuracyPrint.Upper)
  147. {
  148. FreqAccuracyPrint.Result = true;
  149. }
  150. else
  151. {
  152. FreqAccuracyPrint.Result = false;
  153. }
  154. if (parameters.Channel == "通道1")
  155. {
  156. tps.SetTestTableCellValue(point, 10, PowerPrint.Result, PowerPrint.TestVal);
  157. tps.SetTestTableCellValue(point, 7, FreqPrint.Result, FreqPrint.TestVal);
  158. }
  159. else if (parameters.Channel == "通道2")
  160. {
  161. tps.SetTestTableCellValue(point, 11, PowerPrint.Result, PowerPrint.TestVal);
  162. tps.SetTestTableCellValue(point+15, 7, FreqPrint.Result,FreqPrint.TestVal);
  163. }
  164. #region 功率不平度及两路功率总和计算
  165. if (parameters.Channel == "通道1")
  166. {
  167. WTempPowerVal[0, point] = PowerPrint.TestVal;//W
  168. dBTempPowerVal[0, point] = Data.Power[point];//dB
  169. }
  170. else
  171. {
  172. WTempPowerVal[1, point] = PowerPrint.TestVal;//W
  173. dBTempPowerVal[1, point] = Data.Power[point];//dB
  174. }
  175. if (WTempPowerVal[0, point] > -100 && WTempPowerVal[1, point] > -100)
  176. {
  177. PowerSumPrint.Lower = PowerPara.PowerSumLower;
  178. PowerSumPrint.TestVal = Math.Round(WTempPowerVal[0, point] + WTempPowerVal[1, point],2);//W
  179. if ((PowerSumPrint.TestVal >= PowerSumPrint.Lower) && (PowerSumPrint.TestVal <= PowerSumPrint.Upper))
  180. {
  181. PowerSumPrint.Result = true;
  182. }
  183. else
  184. {
  185. PowerSumPrint.Result = false;
  186. }
  187. PowerFlatnessPrint.Upper = PowerPara.PowerFlatnessUpper;
  188. PowerFlatnessPrint.TestVal = Math.Round(Math.Abs(dBTempPowerVal[0, point] - dBTempPowerVal[1, point]),2);//dB
  189. if ((PowerFlatnessPrint.TestVal >= PowerFlatnessPrint.Lower) && (PowerFlatnessPrint.TestVal <= PowerFlatnessPrint.Upper))
  190. {
  191. PowerFlatnessPrint.Result = true;
  192. }
  193. else
  194. {
  195. PowerFlatnessPrint.Result = false;
  196. }
  197. tps.SetTestTableCellValue(point, 12, PowerSumPrint.Result, PowerSumPrint.TestVal);
  198. tps.SetTestTableCellValue(point, 13, PowerFlatnessPrint.Result,PowerFlatnessPrint.TestVal);
  199. }
  200. #endregion
  201. }
  202. return true;
  203. }
  204. public void PsaPeakValue_Tracedata(AppLibs.Devices.IVISA psa, out double Y_Maxvalue, out double X_Maxvalue, bool IsReturnX = false)
  205. {
  206. System.Threading.Thread.Sleep(20);
  207. X_Maxvalue = 0;
  208. Y_Maxvalue = 0;
  209. psa.Write("单次扫描");
  210. psa.Query("OPC");
  211. string tracedata = psa.Query("读曲线");
  212. string[] tracedatas = tracedata.Split(',');
  213. double[] tracedata_double = new double[tracedatas.Length];
  214. for (int i = 0; i < tracedatas.Length; i++)
  215. {
  216. tracedata_double[i] = double.Parse(tracedatas[i]);
  217. }
  218. Y_Maxvalue = Math.Round(tracedata_double.Max(), 3);
  219. if (IsReturnX)
  220. {
  221. int x = Array.IndexOf(tracedata_double, Y_Maxvalue);
  222. double startfreq = double.Parse(psa.Query("读起始频率"));
  223. double stopfreq = double.Parse(psa.Query("读截止频率"));
  224. double counts = double.Parse(psa.Query("测试点数读取"));
  225. X_Maxvalue = startfreq + (stopfreq - startfreq) * x / (counts - 1);
  226. }
  227. }
  228. public class ConfigParameter
  229. {
  230. /// <summary>
  231. /// 串口
  232. /// </summary>
  233. public string ComPort { set; get; }
  234. /// <summary>
  235. /// 输出损耗
  236. /// </summary>
  237. public double OutLoss { set; get; }
  238. /// <summary>
  239. /// 产品测试的起始频率
  240. /// </summary>
  241. public double StartFrequency { set; get; }
  242. /// <summary>
  243. /// 产品测试的频率步进
  244. /// </summary>
  245. public double StepFrequency { set; get; }
  246. /// <summary>
  247. /// 产品测试的频点数量
  248. /// </summary>
  249. public int FrequencyNumber { set; get; }
  250. /// <summary>
  251. /// 产品的工作频带上限(终止频率)
  252. /// 功能:用于判断从起始频率按一定的步进测试是否超出产品工作频段上限
  253. /// </summary>
  254. public double StopFrequency { set; get; }
  255. /// <summary>
  256. ///设置频谱仪的SPAN
  257. /// </summary>
  258. public string SPAN { set; get; }
  259. /// <summary>
  260. /// 设置参考电平
  261. /// </summary>
  262. public string REF { set; get; }
  263. /// <summary>
  264. /// 设置RBW
  265. /// </summary>
  266. public string RBW { set; get; }
  267. /// <summary>
  268. /// 设置VBW
  269. /// </summary>
  270. public string VBW { set; get; }
  271. /// <summary>
  272. /// 控制延时
  273. /// </summary>
  274. public int ControlDelay { set; get; }
  275. /// <summary>
  276. /// 功率下限
  277. /// </summary>
  278. public double PowerLower { set; get; }
  279. /// <summary>
  280. /// 功率上限
  281. /// </summary>
  282. public double PowerUpper { set; get; }
  283. /// <summary>
  284. /// 频率稳定度上限
  285. /// </summary>
  286. public double FreqAccuracyUpper { set; get; }
  287. /// <summary>
  288. /// 两路功率总和下限
  289. /// </summary>
  290. public double PowerSumLower { set; get; }
  291. /// <summary>
  292. /// 功率不平度上限
  293. /// </summary>
  294. public double PowerFlatnessUpper { set; get; }
  295. }
  296. public class PowerAndFreqStabilityOutData
  297. {
  298. /// <summary>
  299. /// 输出功率(W)
  300. /// </summary>
  301. public double[] Power { set; get; }
  302. /// <summary>
  303. /// 频率稳定度
  304. /// </summary>
  305. public double[] FreqAccuracy { set; get; }
  306. /// <summary>
  307. /// 实测频点
  308. /// </summary>
  309. public double[] Freq { set; get; }
  310. /// <summary>
  311. /// 两路功率总和(W)
  312. /// </summary>
  313. public double[] PowerSum { set; get; }
  314. /// <summary>
  315. /// 两路功率不平度(dB)
  316. /// </summary>
  317. public double[] PowerFlatness { set; get; }
  318. }
  319. public class DataType
  320. {
  321. /// <summary>
  322. /// 测试名称
  323. /// </summary>
  324. public string Test_name { set; get; }
  325. /// <summary>
  326. /// 指标下限
  327. /// </summary>
  328. public double Lower { set; get; }
  329. /// <summary>
  330. /// 指标上限
  331. /// </summary>
  332. public double Upper { set; get; }
  333. /// <summary>
  334. /// 测试值
  335. /// </summary>
  336. public double TestVal { set; get; }
  337. /// <summary>
  338. /// 判断结果
  339. /// </summary>
  340. public bool Result { set; get; }
  341. }
  342. }
  343. }